Publications

A machine learning based splitting heuristic for divide-and-conquer solvers

Saeed Nejati · Ludovic Le Frioux · Vijay Ganesh

In this paper, we present a machine learning based splitting heuristic for divide-and-conquer parallel Boolean SAT solvers. Splitting heuristics, whether they are look-ahead or look-back, are designed using proxy metrics, which when optimized, approximate the true metric of minimizing solver runtime on sub-formulas resulting from a split. The rationale for such metrics is that they have been empirically shown to be excellent proxies for runtime of solvers, in addition to being cheap to compute in an online fashion. However, the design of traditional splitting methods are often ad-hoc and do not leverage the copious amounts of data that solvers generate. To address the above-mentioned issues, we propose a machine learning based splitting heuristic that leverages the features of input formulas and data generated during the run of a divide-and-conquer (DC) parallel solver. More precisely, we reformulate the splitting problem as a ranking problem and develop two machine learning models for pairwise ranking and computing the minimum ranked variable. Our model can compare variables according to their splitting quality, which is based on a set of features extracted from structural properties of the input formula, as well as dynamic probing statistics, collected during the solver’s run. We derive the true labels through offline collection of runtimes of a parallel DC solver on sample formulas and variables within them. At each splitting point, we generate a predicted ranking (pairwise or minimum rank) of candidate variables and split the formula on the top variable. We implemented our heuristic in the Painless parallel SAT framework and evaluated our solver on a set of cryptographic instances encoding the SHA-1 preimage as well as SAT competition 2018 and 2019 benchmarks. We solve significantly more instances compared to the baseline Painless solver and outperform top divide-and-conquer solvers from recent SAT competitions, such as Treengeling. Furthermore, we are much faster than these top solvers on cryptographic benchmarks.

On the usefulness of clause strengthening in parallel SAT solving

Vincent Vallade · Ludovic Le Frioux · Souheib Baarir · Julien Sopena · Fabrice Kordon

In the context of parallel SATisfiability solving, this paper presents an implementation and evaluation of a clause strengthening algorithm. The developed component can be easily combined with (virtually) any CDCL-like SAT solver. Our implementation is integrated as a part of Painless, a generic and modular framework for building parallel SAT solvers.

A new minimum barrier distance for multivariate images with applications to salient object detection, shortest path finding, and segmentation

Minh Ôn Vũ Ngọc · Nicolas Boutry · Jonathan Fabrizio · Thierry Géraud

Distance transforms and the saliency maps they induce are widely used in image processing, computer vision, and pattern recognition. One of the most commonly used distance transform is the geodesic one. Unfortunately, this distance does not always achieve satisfying results on noisy or blurred images. Recently, a new (pseudo-)distance, called the minimum barrier distance (MBD), more robust to pixel variations, has been introduced. Some years after, Géraud et al. have proposed a good and fast-to compute approximation of this distance: the Dahu pseudo-distance. Since this distance was initially developped for grayscale images, we propose here an extension of this transform to multivariate images; we call it vectorial Dahu pseudo-distance. An efficient way to compute it is provided in this paper. Besides, we provide benchmarks demonstrating how much the vectorial Dahu pseudo-distance is more robust and competitive compared to other MB-based distances, which shows how much this distance is promising for salient object detection, shortest path finding, and object segmentation.

Seminator 2 can complement generalized Büchi automata via improved semi-determinization

František Blahoudek · Alexandre Duret-Lutz · Jan Strejček

We present the second generation of the tool Seminator that transforms transition-based generalized Büchi automata (TGBAs) into equivalent semi-deterministic automata. The tool has been extended with numerous optimizations and produces considerably smaller automata than its first version. In connection with the state-of-the-art LTL to TGBAs translator Spot, Seminator 2 produces smaller (on average) semi-deterministic automata than the direct LTL to semi-deterministic automata translator ltl2ldgba of the Owl library. Further, Seminator 2 has been extended with an improved NCSB complementation procedure for semi-deterministic automata, providing a new way to complement automata that is competitive with state-of-the-art complementation tools.

Euler well-composedness

Nicolas Boutry · Rocio Gonzalez-Diaz · Maria-Jose Jimenez · Eduardo Paluzo-Hildago

In this paper, we define a new flavour of well-composedness, called Euler well-composedness, in the general setting of regular cell complexes: A regular cell complex is Euler well-composed if the Euler characteristic of the link of each boundary vertex is $1$. A cell decomposition of a picture $I$ is a pair of regular cell complexes $\big(K(I),K(\bar{I})\big)$ such that $K(I)$ (resp. $K(\bar{I})$) is a topological and geometrical model representing $I$ (resp. its complementary, $\bar{I}$). Then, a cell decomposition of a picture $I$ is self-dual Euler well-composed if both $K(I)$ and $K(\bar{I})$ are Euler well-composed. We prove in this paper that, first, self-dual Euler well-composedness is equivalent to digital well-composedness in dimension 2 and 3, and second, in dimension 4, self-dual Euler well-composedness implies digital well-composedness, though the converse is not true.

A 4D counter-example showing that DWCness does not imply CWCness in $n$-D

Nicolas Boutry · Rocio Gonzalez-Diaz · Laurent Najman · Thierry Géraud

In this paper, we prove that the two flavours of well-composedness called Continuous Well-Composedness (shortly CWCness), stating that the boundary of the continuous analog of a discrete set is a manifold, and Digital Well-Composedness (shortly DWCness), stating that a discrete set does not contain any critical configuration, are not equivalent in dimension 4. To prove this, we exhibit the example of a configuration of 8 tesseracts (4D cubes) sharing a common corner (vertex), which is DWC but not CWC. This result is surprising since we know that CWCness and DWCness are equivalent in 2D and 3D. To reach our goal, we use local homology.

Non-iterative methods for image improvement in digital holography of the retina

Julie Rivet

With the increase of the number of people with moderate to severe visual impairment, monitoring and treatment of vision disorders have become major issues in medicine today. At the Quinze-Vingts national ophthalmology hospital in Paris, two optical benches have been settled in recent years to develop two real-time digital holography techniques for the retina: holographic optical coherence tomography (OCT) and laser Doppler holography. The first reconstructs three-dimensional images, while the second allows visualization of blood flow in vessels. Besides problems inherent to the imaging system itself, optical devices are subject to external disturbance, bringing also difficulties in imaging and loss of accuracy. The main obstacles these technologies face are eye motion and eye aberrations. In this thesis, we have introduced several methods for image quality improvement in digital holography, and validated them experimentally. The resolution of holographic images has been improved by robust non-iterative methods: lateral and axial tracking and compensation of translation movements, and measurement and compensation of optical aberrations. This allows us to be optimistic that structures on holographic images of the retina will be more visible and sharper, which could ultimately provide very valuable information to clinicians.

LTL model checking for communicating concurrent programs

Adrien Pommellet · Tayssir Touili

We present in this paper a new approach to the static analysis of concurrent programs with procedures. To this end, we model multi-threaded programs featuring recursive procedure calls and synchronisation by rendez-vous between parallel threads with communicating pushdown systems (from now on CPDSs).The reachability problem for this particular class of automata is unfortunately undecidable. However, it has been shown that an efficient abstraction of the execution traces language can nonetheless be computed. To this end, an algebraic framework to over-approximate context-free languages has been introduced by Bouajjani et al.In this paper, we combine this framework with an automata-theoretic approach in order to approximate an answer to the model checking problem of the linear-time temporal logic (from now on LTL) on CPDSs. We then present an algorithm that, given a single-indexed or stutter-invariant LTL formula, allows us to prove that no run of a CPDS verifies this formula if the procedure ends.

Improving swarming using genetic algorithms

Renault

The verification of temporal properties against a given system may require the exploration of its full state space. In explicit model checking, this exploration uses a depth-first search and can be achieved with multiple randomized threads to increase performance. Nonetheless, the topology of the state space and the exploration order can cap the speedup up to a certain number of threads. This paper proposes a new technique that aims to tackle this limitation by generating artificial initial states, using genetic algorithms. Threads are then launched from these states and thus explore different parts of the state space. Our prototype implementation is 10% faster than state-of-the-art algorithms on a general benchmark and 40% on a specialized benchmark. Even if we expected a decrease in an order of magnitude, these results are still encouraging since they suggest a new way to handle existing limitations. Empirically, our technique seems well suited for "linear topology", i.e., the one we can obtain when combining model checking algorithms with partial-order reduction techniques.